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’ INTRODUCTION

At the very heart of the role of a medicinal chemist or drug
designer is the ability to link chemical structure to molecular
properties. This is the structure�activity relationship (SAR) or
structure�property relationship (SPR). At the start of under-
standing SAR is the idea that “adding” a particular group “adds”
a degree of potency, stability, or other biological property.
Many chemists will use this language, for example: “adding a
chlorine at the 2-position adds 3-fold potency but lowers
solubility by 10-fold”. This language is derived from the training
of many medicinal chemists being based in synthetic chemistry
where thinking literally could be to “add” the chlorine. It is a
small conceptual step to then think in terms of a virtual
transformation where, although it cannot be done in one step
synthetically, the two bioactive compounds can be considered
as either end of a transformation. Another conceptual step is to
then consider all the occasions a particular change has been
tried to be examples of the same transform and to ask questions
such as “How much potency does adding chlorine at the
2-position generally give?” and “What is the general effect on
solubility?”. The equivalent but systematic approach is to
describe the initial compound and the new compound as a
“matched pair” linked by the addition of a chlorine at the
2-position and then to look at the statistics of the effects of this
structural change. Six years ago one of our colleagues coined the
phrase “matched molecular pairs analysis” (MMPA) to describe
any systematic method of identifying matched molecular pairs
from a set of compounds and determining the property change
associated.1 One of the key advantages of MMPA over other
data analysis and modeling techniques is that it deals directly
with chemistry andmeasured data, ensuring clear interpretation
of the results. In recent times MMPA has been usefully applied
by numerous workers in a range of disciplines within both
academia and the pharmaceutical industry.

Drug discovery projects frequently discover that a particular
structural change causes a change (for good or ill) to a property
of interest, as described above. Two contrasting fates often
follow. In the first case, the effect is described to others and
what had been an observation in one series is passed on as if a
general rule of thumb, whether general or not. In the second
case, the effect is not disclosed beyond the original project and
the knowledge, either explicit or tacet,2 does not get passed on.
MMPA provides a means to both test the generality of rules of
thumb and to extract understanding that might otherwise be lost.

The four authors of this Miniperspective have been involved
in developing and implementing some variations on the original
theme ofMMPA and felt this to be the time to highlight some of
these and to point toward future developments. All of us are
involved in the process of drug design, and it is within this
context that we will set our comments. In outline, we shall
introduce matched molecular pair analysis and highlight why it
fits so well with the kind of problem solving that is required in
the process of drug design. This will be followed by some
comments concerning when the application of the methodol-
ogy is appropriate. Then in a section intended for those with
more computational interests, we will describe the various ways
that have been devised for identifying such matched pairs.
Finally, we will present our expectations for where this approach
might be developed in the future.

Throughout the paper, we have elected to use a publicly
available data set to illustrate some of our comments: the ChEMBL
database of inhibitors of the epidermal growth factor receptor tyro-
sine kinase (EGFR).3 This consists of 2899measurements of an IC50

annotated as a binding measurement on 2348 unique compounds.
These measurements are drawn from a number of sources, having
been abstracted from the scientific literature.We use examples based
on this mixed data set purely for illustrative purposes.

’DEFINING MATCHED MOLECULAR PAIR ANALYSIS
AND ITS RELATIONSHIP TO OTHER ESTABLISHED
APPROACHES

Matched pairs have generally been defined similarly to the
definition proffered 5 years ago by one of us as “molecules that
differ only by a particular, well-defined, structural transformation”.4

It is worth noting that while this label emphasizes the two
molecules that are related, others have emphasized the trans-
formation linking them.5 Although the labels vary, the key
concept is that the effect of small structural differences between
molecules is more easily predicted than the absolute value for
the activity or property of each molecule, which is the approach
taken in the field of quantitative structure�activity relation-
ships (QSAR) and quantitative structure�property relation-
ships (QSPR). Viewed like this, MMPA and QSAR/QSPR are
related in a similar fashion as free energy perturbation methods
are to the scoring of bound poses in the field of prediction of
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protein�ligand binding energies. In that arena as here, the
methods focusing on differences as opposed to absolute values
tend to be more successful. The origin of this difference in
performance owes much to the cancellation of errors and to the
averaging out of localized effects present in individual cases.

The quest to quantify the effect of structural changes upon
properties of pharmaceutical relevance has emerged as a related
discipline to the identification of bioisosteres.6 These can be
defined as “the replacement of a part of a bioactive molecule
with a substructure that is similar in size and exhibits similar
properties.”7 While the emphasis in bioisosterism has usually
been to find groups that are unlikely to change the primary
binding potency of a compound, the concept applies quite
readily to finding molecular transformations that are likely to
leave any given property unchanged. Such transformations are
naturally and inevitably identified during the course of most
matched molecular pair analyses. For instance, when studying
matched molecular pairs that occur in druglike compounds,
Sheridan found that phenyl is often exchanged with thiophene.
In the context of the EGFR data set, all the pairs in which this
transformation has been imposed have been identified and are
shown in Figure 1. These show that within this data set this
particular isostere is valid. For the overall data set, the mean
change is �0.12 with a standard error in that mean of 0.16,
indicating that an underlying mean change of 0 is not contra-
indicated. For individual cases, the error bars on the plot
indicate 3-fold variation in the IC50, a typical experimental
uncertainty; most cases do not show differences beyond what
can be accurately determined.

MMPA might also be considered a relation of Free-Wilson
analysis.8 In this kind of analysis a least-squares fit is used to link
different R-groups around a molecular core to contributions to a
property of interest. The contrast between the two is illustrated
in Figure 2. A notional series of compounds is illustrated as a
simple substituted phenyl ring. Free�Wilson analysis is able to
make predictions for the contribution of each of the five
substituents at defined positions: A1, A2, A3, B1, and B2. Mean-
while, matched molecular pair analysis is able to estimate the
effect of transforming A1 to A2 and of B1 to B2 and A2 to A3 but

not A1 to A3; no pairs exist in which two molecules differ only by
the change A1 to A3. The effect of the last change can only be
inferred from the sum of the change caused by changing A1 to A2

and that of changing A2 to A3. It has been demonstrated that in
some cases this sum of pairwise effects is equivalent to the direct
transformation.4 Free�Wilson analysis is a powerful way of
understanding the contribution various groups make within a
well-defined part of chemical space; the ability to directly link A1

to A3 can be viewed as a strength of the analysis. However, if there
is substantial interaction between A and B, then the link that is
made may be misleading. MMPA would not make that link
directly; unlike Free�Wilson analysis additivity of SAR is neither
assumed nor required.9 While there are relationships with the
modeling techniques of Free and Wilson, no model is ever built
from the data and the link back to measurement remains clear
and unambiguous.8

In close analogy to the approach of Topliss,10 MMPA can also
be used to derive small sets of substituents to probe a given
property. Dossetter studied the groups to which phenyl substit-
uents had been transformed (limited to substituted phenyls and
unsubstituted pyridines) in a data set of microsomal metabolic
clearance.11 The range of changes that had historically been
brought about by these transformations can set expectations for
what might be expected of them in the future, and a representa-
tive subset can be picked. This subset should span microsomal
clearance in a similar way to the Topliss set of substitution
patterns that were selected to span electronic and lipophilic
properties. This can guide the design of libraries to probe the
changes in clearance that might be expected by modifying certain
parts of a chemical series.

QSAR or QSPR methods are also frequently used within the
pharmaceutical industry and allow properties of the whole
molecule (measured or calculated) to be related to the activity
or property of interest.12,13 Though many successful QSAR and
QSPR models have been reported, these models have inherent
disadvantages. By their very nature they tend to find the most
generalized relationships that smooth over interesting substruc-
tural effects14 and tend to be limited in the precision of predic-
tion. Such generalizations in the prediction of primary potency,
and other properties, are often insufficient for guiding design in a
lead optimization phase. Precision and accuracy are further
limited by the quality of descriptors used in the model. Although
many thousands of descriptors can be generated, the value of
each is not always clear and can lead to misleading relationships
and chance correlations, depending on the data and modeling
technique used.15 Descriptors frequently describe chemical
structure incompletely, and so information about the structure�
activity relationship is lost.

To illustrate the differences, the EGFR data set has been
treated with a very simpleQSAR approach andwithMMPA.One
of the most commonly occurring transformations in the EGFR
data set is that of converting a m-bromoaniline group into a

Figure 1. Matched molecular pairs in the EGFR data set that differ by
transformation of phenyl to thiophenyl. On the x-axis is plotted the
pIC50 value of the phenyl compound and on the y-axis the value for the
thiophenyl. The red line is the 1:1 line. Error bars correspond to 3-fold
variation in the IC50 and indicate typical experimental uncertainty.

Figure 2. Example illustrating the contrast between Free�Wilson
analysis and matched molecular pairs. A series of compounds with
defined substitution positions is illustrated as a simple substituted
phenyl ring.
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m-chloro-p-fluoroaniline, as shown in Figure 3a. There are 34
occurences of this matched pair in the data set. Pairs were
assigned a random number between 0 and 1, and where the
value was less than 0.5 (18 pairs in this case), the m-chloro-p-
fluoroaniline analogue was assigned to a test set. A training set
was built in which these 18m-chloro-p-fluoroaniline containing
compounds were excluded. A QSAR model was built for the
2287 remaining compounds using 193 standard descriptors (40
compounds were not amenable to calculation of all of the
descriptors, and 3 did not have IC50 data) as computed by the
in-house c-lab tool.16 The model was built using a simple least-
squares fitting approach in the JMP package.17 An excellent fit is
obtained for both the training set and the test set, as shown in
parts b and c of Figure 3. The training set achieves an R2 of 0.78
and RMSE of 0.66, while the 18-member test set achieves an
RMSE of 0.74. All of these are perfectly reasonable values,
suggesting a well-behaved QSAR model. By contrast, the 16
matched molecular pairs in the training set show the changes in
pIC50 illustrated in Figure 3d. The distribution has a mean of
�0.18 and a standard error in that mean of 0.18 and standard
deviation of 0.73. Adding�0.18 to the pIC50 for each of the 18
m-bromoaniline containing compounds corresponding to the
test set led to the predicted pIC50 values plotted in blue in
Figure 3e. The points marked with black crosses are the
corresponding values for the m-bromoaniline from which each
prediction is projected. The predictions are generally excellent;
the RMSE for the test set is 0.55. The performance of the
matched pairs prediction in the test set is unexpectedly better
than in the training set, where the RMSE is 0.70. Figure 3 e
illustrates why matched pairs tends to be more successful in
terms of predictivity, as it shows that the challenge has been

reduced. The potency of the m-bromoaniline compound pro-
vides a good starting point for predicting the potency of the
transformed compound. Just as important, the outliers away
from the matched pairs plot provide insight, as highlighted in
many literature studies;4,18 the outlier in Figure 3e is compound
1. Knowing that this is an outlier can be a spur to drive
hypothesis generation, which in turn leads to design of new
compounds or further testing of existing compounds.

Although the overall quality of a QSAR model can be
determined, the applicability of the model to specific chemistries
cannot easily be assessed. Even if a “good” QSAR model that
could accurately predict a given activity was discovered, on its
own it can provide no information about what tomake in the next
cycle of drug design. This “inverse QSAR” problem is one to
which MMPA is particularly suited. Changes in chemical struc-
ture are linked directly to changes in property; knowing what the
desired change in property is, a suitable structural change can be
selected. The lessons from the historical data allow medicinal
chemists to make the best predictions possible about what
particular structural changes will achieve in the future.

’CONSIDERATIONS WHEN APPLYING MATCHED
MOLECULAR PAIR ANALYSIS

There are a number of issues that ought to be considered
carefully when applying MMPA. These are grouped together
here into those concerning the chemical structures and those
concerning the preparation and analysis of the associated data.
The principal concern in the area of chemical structure is how the
“tradeoff (sic) between specificity and generalizability”, as high-
lighted by Papadatos et al. is achieved.18 Stated in an alternative

Figure 3. (a) Structural change being studied for its effect upon pIC50 against EGFR. (b) Measured values for a training set of compounds plotted
against predictions from a simple least-squares QSAR model based upon 193 descriptors for 2287 compounds. (c) Measured values plotted against
predictions for a test set of 18 compounds all containing the m-chloro-p-fluoroaniline using the QSAR model built to generate (b). (d) Distribution of
changes in measured values between 16 training set molecular pairs differing only by the transformation ofm-bromoaniline tom-chloro-p-fluoroaniline.
(e) In blue are the measured values of the same test set as in (c) plotted against the prediction based on matched pairs, assuming that all compounds will
experience a mean change of�0.18. In black crosses are plotted the measured values for the m-bromoanilines upon which these predictions are made.
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fashion: the more tightly the context of a given structural
change is controlled, the smaller the data set of relevant
transformations will be and the less structural diversity will be
sampled. These two factors conflate to restrict how generally
applicable the derived estimates of the change in the property
value will be. This is discussed in many of the papers referred to
in this article. Here we illustrate the issue with the EGFR data
set. In Figure 4 a hierarchy of sets of matched molecular pairs is
given. All of the pairs correspond to the addition of a hydroxyl
group. At the very top is the set of all such matched pairs.
Beneath this are two subsets, one in which hydroxyl is added to
an aromatic carbon and the other in which it is added to an
aliphatic carbon. The distribution in changes in potency for
each of these subsets is given along with the corresponding
statistics. These two subsets are statistically distinct from one
another and suggest that if addition of hydroxyl is being
considered, addition to an aromatic carbon should be preferred
over addition to an aliphatic carbon. In the bottom layer, the
distributions of changes in potency are given for two of the
many possible subsets of the aromatic carbons, one in which the
hydroxyl is added in the para position of an aniline and a second
in which it is added to the 7-position of a quinazoline. These
two sets are more likely to represent the kind of structural
change of interest in a lead optimization campaign, but neither

has enough representatives to be very general and neither is
statistically distinct either from each other or from the more
general set of changes caused by adding hydroxyl to an aromatic
carbon. While the general rule that addition of hydroxyls is
likely to be beneficial for EGFR potency is obtained (top layer),
this may not be of use to projects limited for some reason to
adding hydroxyls either to aliphatic carbons (middle layer) or to
particular aromatic carbons (bottom layer).

When the context is completely proscribed to a particular
attachment point on a particular series, the analysis almost
reduces to Free�Wilson analysis (see Figure 2 for differences),
which is not necessarily applicable or relevant beyond that
context. If the context is completely uncontrolled, then the
effect of a particular transformation is likely to reflect only simple
trends, most notably lipophilicity determined effects.4,18,19

However the subsetting is performed, a threshold number of
molecular pairs must be included in a set before the mean change
becomes stable to the inclusion of additional pairs and a signi-
ficant degree of molecular diversity is required among the mole-
cules contributing to a set of pairs before chemists using the
analysis can have confidence that any prediction is likely to be
applicable in a general fashion. The first of these concerns is
dependent upon the data type being analyzed, whereas the
second requires an estimate of the diversity encompassed within

Figure 4. Distribution of changes in EGFR pIC50 caused by adding a hydroxyl group in varying contexts with the most general case at the top and some
specific positions at the bottom. The distributions are summarized by mean values, standard errors in those means (SEM), the standard deviation (SD),
and the number of representative pairs identified (N). Ar represents any aromatic carbon linked group and R any aliphatic carbon linked group.
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a set. This was achieved by manual inspection of the contributing
molecular pairs in the publication of Leach et al. but is automated
in internal AstraZeneca Web pages by computing the mean
Tanimoto difference among the first members of all pairs in a
set.4 These Tanimoto differences can be benchmarked to identify
a cutoff that is felt to represent adequate diversity for general
applicability. In their study, Gleeson et al. control for diversity by
ensuring that each set of compounds contains representatives of
at least five clusters, grouped by Tanimoto comparison of Day-
light fingerprints, and ensuring that each set has at least 20 pairs.20

These two considerations of data set size and diversity are too
rarely considered in publications in this area. A cautionary note is
provided by data related to that originally presented by Leach
et al. and shown in Figure 5.4 The addition of methyl sulfone
groups to phenyl rings was reported in that paper to increase
solubility. The variation of the mean change in solubility as
measurements have been added to the database is shown in the
period leading up to that publication and since. It is noteworthy
that the transformation now is found to correspond to a small
reduction in solubility. Meanwhile the structural diversity, as
assessed by mean Tanimoto distance among the phenyl sulfones,
has remained fairly constant at ∼0.6, having reached that point
after about 10 pairs were included. At the time of the publication
the mean change in log(solubility) was +0.26 with a standard
error in that mean of 0.12; currently the corresponding mean
value is�0.03 with a standard error of 0.09. The twomean values
are consistent with an underlying population mean in the range
+0.02 to +0.15 (see green lines in Figure 5), but the variation in
the mean from positive to negative is an extreme example of how
temporal variation might dent confidence in the value of the
analysis. Such variations are less likely the larger the data set is
and the greater the structural diversity represented, but this
relationship will depend upon both the structural change being
studied and the nature of the data being mined.

A final consideration related to chemical structure that is often
neglected is stereochemistry. This can be difficult to treat
correctly, particularly if matched pairs are defined by changes
at one end or other of a bond to a stereocenter. This is
particularly the case in many of the fragmentation approaches

discussed below along with MCSS approaches that often use
molecular graphs that neglect stereochemical information. For
some properties, this is likely to have only a minor influence
(lipophilicity for instance), but for others it will have a profound
effect upon whether the pairs are appropriately paired or not and
hence whether the resulting property change is computed
correctly. For all of the reasons outlined in this section, it is
beneficial to provide a link to the original data upon which any
matched pairs analysis is based such that users can decide for
themselves whether the result is relevant. Even rules that appear
to be general should be subject to such scrutiny.

The requirements of the data to be analyzed should also be
considered carefully. Generally, the output from a matched pairs
analysis is either a mean change in a particular property or else
the proportion of times that a property has changed in a
particular way (i.e., increased vs decreased or active vs inactive).
The first of these requires that the property being compared in a
pairwise fashion is within the dynamic range of the assay and on a
linear scale (and preferably normally distributed). For some
properties, such as IC50 values, this might involve log transfor-
mation to yield pIC50 values or equivalents as suggested by Fujita
and Ban in their modified version of Free�Wilson analysis.8,20,21

Properties that are like rates or equilibrium constants should only
properly be compared as ratios such that logarithmic transforma-
tion should be performed if linear comparisons are to be made, as
is the case inMMPA. Logarithmic conversion is also applicable to
the analysis of physicochemical and pharmacokinetic parameters,
as has been demonstrated by Leach et al. in their study of aqueous
solubility, plasma protein binding, and in vivo plasma exposure
following oral dosing.4 A recent paper describes multiplicative
transformations, but these result from inappropriately comparing
untransformed properties.2

Careful consideration should also be given at the outset of
what types of data should be paired together for comparison;
differences between compounds measured in different assay
formats may reveal only differences between assays and may
not be related to the structural change. For example, Leach et al.
only analyzed solubility data from an assay using solids provided
by chemists. Data obtained in assays starting from DMSO
solubilized samples were not included. If the need for more data
to create larger matched pair sets and increase chemical diversity
had been felt, these data could have been included with the risk
that the extra variation would add more noise from which a signal
might be more difficult to detect. Hajduck et al. compared data
from a large set of different assays and end points in a way that is
not recommended.19 Careful consideration should also be given
to which sets of pairs should be aggregated together to arrive at
summary statistics. Even when data are obtained in comparable
assays within each pair, in some cases groups of pairs measured in
different assay formats might be sensibly aggregated and in others
not. The decision about what to group together should ideally be
taken in collaboration with those involved in the design and
performance of the experiments. It is with these caveats in mind
that our findings based on the EGFR data set are illustrative
examples only.

The mean change ought to be presented alongside the
standard error in the mean to determine if it is actually distinct
from zero (mean( 2(SEM) should not include 0 to provide 95%
confidence that the structural change generally causes a change in
the property). This was illustrated graphically by Dossetter in his
analysis of microsomal Clint values where the mean was plotted
against the standard error for a set of pairs in which phenyl groups

Figure 5. Variation with time in the mean change in solubility corre-
sponding to addition of methyl sulfone to phenyl rings. The individual
matched pairs are plotted as blue crosses in the order in which they were
added to the data set, and the mean following the addition of each point
is plotted in red. The green lines are at 2 standard errors in the mean
above and below the mean at each point. The green arrow indicates the
point in time at which the data in the publication by Leach et al. were
extracted.4
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are exchanged for alternative substituted aromatic rings.11 Pair
sets that lie above the y = 2x or below the y = �2x line are the
transformations satisfying this criterion. The standard deviation
should also be considered in order to provide the likely range of
values in the change in property to be expected when a
transformation is performed. Two standard deviations about
the mean ought to encompass the actual value of the change in
95% of cases. Although testing that a mean is distinct from zero
might provide confidence that the change is real, when this
statistical test is not passed, the values still facilitate the presenta-
tion of the relevant information. In such circumstances, it could
be concluded that a bioisostere has been identified or else that
more measurements are required to enhance the reliability of the
mean value.

Many assays have limited dynamic ranges; values outside of
the dynamic range cannot be compared to other values (within
or without the dynamic range). In this circumstance, it may be
that many pairs of interest might be excluded when computing
the mean change; oftentimes these are the most interesting
pairs because they involve the most substantial changes in a
property. This kind of transformation is likely to include the
discontinuous changes identified by Wasserman and Bajorath
and the switch transformations highlighted by Keefer et al.2,22

In these cases, it may be appropriate and useful to instead
analyze the number of times that a property changes in a
particular direction rather than the degree of change. These
proportions ought to track with the mean difference. This was
shown by Leach et al. for solubility and plasma protein binding
and illustrated in Figure 6.4 If the data set is diverse and large
enough, the observed proportion ought to be equivalent to
the probability that applying the transformation to a new mole-
cule (in the relevant context) will also cause the property to change
in the same direction. This is often the kind of information that
lead optimization projects are searching for, that transforma-
tions are likely to move a property in a desired direction or at
the least not move it in an undesired direction. Similarly, data
sets in which compounds are classified categorically, either
because of the nature of the assay (e.g., Ames testing to identify
either active or inactive compounds)23 or artificially (e.g., Pfizer
metabolism index),24 can be analyzed in a pairwise fashion
leading to predicted probabilities for changes among the
various classifications. In their analysis of over 150 000 in vitro
clearance measurements in human liver microsomes (HLM),
Lewis and Cucurull-Sanchez quote 2-fold changes or greater as
being significant based on variability in the experimental

procedure.25 Papadatos et al. also used a 2-fold margin in their
classification of hERG activity, solubility, and lipophilicity into
favorable, unfavorable, and zero effect transformations.18 Despite
loss of some quantitative information, this approach benefits
from being able to include additional data points that are out of
range of the assay. For example, a molecular transformation corre-
sponding to a change in hERG activity from 7 to >30 μM could
be considered as a significant decrease, albeit in the absence of
any estimate of the magnitude of the reduction. In her study of
Pfizer’s uridine 50-diphosphoglucuronosyltransferase (UGT) data
set, Cucurull-Sanchez adopted a different approach by classifying
the compounds themselves as exhibiting either high or low cleara-
nce before conducting any analysis.26

One complication with MMPA is deciding which properties
are most useful for analysis. The simpler the property is, the more
likely there is to be a straightforward link to molecular structure.
This was exemplified by Leach et al.; effects upon solubility and
plasma protein binding were shown to frequently occur with
tight statistical certainty, whereas those concerning in vivo
plasma exposure, which depends upon many other properties
of the molecule, were less likely to do so.4 Similarly, where a
measurement relates simply to a binding event between protein
and ligand, a better outcome might be expected than where a
functional effect (agonism, antagonism, channel blocking, etc.) is
measured, although we have found that MMPA can be effective
for analyzing these more complex end points.

’METHODS TO IDENTIFY MATCHED MOLECULAR
PAIRS

This section focuses on the algorithmic details of how several
groups have chosen to identify matched pairs, and those less
computationally inclined might prefer to skip to the next section.
Recent literature has demonstrated that there are a host of
different approaches to identifying matched molecular pairs.
The choices made by different researchers often provide an
insight into the philosophy underpinning the use of matched
molecular pairs in these different groups. In this section we
highlight some of the key variations.
(i) Small Data Sets. There are numerous reports in the

medicinal chemistry literature involving “matched pairs” within
a series featuring a common core.27�31 This basic form ofMMPA
is essentially an abstraction of the kind of information provided
in many of the tables in publications in this journal where the
variation of properties with substituents is detailed. It can be

Figure 6. Proportion of cases in which a property increases plotted against themean change in the property for log(solubility) on the left and log(K1) for
plasma protein binding on the right. Error bars correspond to 2 standard errors in the mean on the x-axis, and the binomial probability 95% confidence
interval is on the y-axis. All data are taken from Leach et al.4
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formalized by defining a core and simply plotting the substi-
tuent at a given position against the property of interest.32 The
analysis is then completed with the connection of points in
which the remainder of the molecule is the same. The magni-
tude and consistency of property differences between one
substituent and another are revealed.33 Automated MMPA in
this form has been implemented at AstraZeneca to support lead
optimization projects that work within defined series. A core is
defined by each project team, and the various exchanges of
substituents around the core are automatically detected and the
corresponding changes in properties computed. This is parti-
cularly powerful in an environment in which all compounds are
subject to parallel testing in a battery of assays such that a fairly
comprehensive view of the effect structural changes have on the
full range of properties can be detected; this in turn can drive
multiparameter optimization.34 Any new data that are gener-
ated are automatically added such that a simple Web tool can
provide a project team with the most up to date view of the
effect of all structural changes so far tried. This influences the
choices that are made about which compound to make next in a
dynamic fashion. In this simple form, the overlap with Free�
Wilson analysis is clear. For the remainder of this section, only
those methods where the formal definition of a core is not
required are detailed.
(ii) Supervised Approaches. A number of attempts to

correlate changes in molecular structure with changes in
properties on a large scale have relied on the investigator, either
wholly or in part, to define the transformations themselves prior
to conducting the analysis. Researchers at AstraZeneca’s Alderley
Park site have used the molecular editor program LEATHER-
FACE to convert the SMILES for each putative member of a
matched pair into its counterpart structure.1,4,35,36 The use of
SMARTS to define the substructure to be modified allows con-
trol over the chemical environment in which the structural modi-
fication occurs.37 Further developments in the same group led
to the program find_pairs and its successor thrice_pairs.38,39

These rely upon defining the two end points with SMARTS
patterns and defining how the atoms in each SMARTS pattern
map onto one another and might be considered to be a basic
implementation of SMIRKS.4,11 Gleeson et al. used related
methodology that also allows the second member of the pair to
be encoded using SMARTS.20 This extension allows less specific
transformations such as ArCl to ArAr0 (Ar0 = any aromatic) to be
studied and is achieved by using SMARTS filtering as opposed to
SMILES matching as a final step. The diversity of the hit list can
be expanded even further by using “X to any” type transformation
definitions, where just the initial molecule less fragment X is used
as a product substructure filter. Pfizer’s “Buy me Grease” tool
allows users to mine for matched molecular pairs via a Web
interface.25 The program is implemented in Pipeline Pilot and
requires a RXN file to be provided by the user to define the
molecular transformation of interest.40 The reaction is applied
to the entire data set and identifies compounds for which experi-
mental data also exist for the products. Finally, a report is gen-
erated with a histogram indicating the percentage of times the
transformation increased, decreased, or had no effect on the
property, in vitro clearance in this case.
Other authors have used predefined transformation lists to

supplement an unsupervised method that is reliant on the heavy
atom framework of one member of the matched molecular pair
being structurally embedded within the other. Hajduk and Sauer
used the Daylight toolkit to identify instances where onemember

of each putativematched pair was a substructure of the other.19,41

Cases where only one fragment remained following cleavage of
that substructure were considered matched molecular pairs.
Cucurull-Sanchez adopted a similar tactic, having identified a
collection of substructural features that related to either high or
low UGT clearance.26

(iii) Unsupervised Approaches. The fastest and most effi-
cient way to identify matched molecular pairs within a data set in
an unsupervised fashion is to decompose the molecules into
fragments, which may then be indexed to allow rapid sorting and
retrieval from a database. The fragmentation schemes are typi-
cally based on the method described by Bemis and Murcko,
where acyclic single bonds are cleaved to define a molecular
scaffold and its side chain substituents.42,43 Suchmethods benefit
from the requirement to process each molecule just once, as once
the core(s) and side chain(s) for a given structure have been
defined, the process of matched pair identification requires
simply pairing compounds with a common core.
Haubertin and Bruneau used a variant of the RECAP frag-

mentation process in their analysis of over 50 000 druglike
compounds to determine the effect of common structural
transformations on solubility, plasma protein binding, and
lipophilicity.44,45 Their definition of a side chain was limited to
fragments having an acyclic attachment point and a SMILES
string of less than 40 characters, which resulted in a fixed library
of 9038 substructures. Their rationale for limiting the size of the
side chain library in this way was to expedite the identification of
side chains in previously unprocessed structures submitted by
users through a Web interface. All side chain occurrences were
identified in each of the druglike molecules, generating a total of
386 757 core/side chain combinations, from which the core
pairing process identified 733 445 occurrences of side chain
substitution. Hussain and Rea were able to address some of the
limitations of this approach by removing the 40-character limit
from the definition of a fragment and extending the fragmenta-
tion procedure to include double and triple cut disconnection
patterns.46 Their analysis identified all heavy atom molecular
pairs arising from acyclic bond disconnection from a set of
333 491 compounds in just under 14 h on a single CPU.
Hydrogen substitutions were identified in a second step by
capping the fragments arising from single cut fragmentations
with hydrogen and then looking up the canonicalized SMILES
among the input molecules. This paper reports the first use of
SMIRKS to encode the transformations identified from MMPA,
although the contextual information was not retained to ensure
specificity in their application.
This issue of context dependence is one that has recently been

studied in some depth at the University of Sheffield, U.K., in
collaboration with GlaxoSmithKline.18 The fragment indexing
approach described above was selected for this study because of
its computational efficiency. For each transformation, the context
was characterized using a total of five additional descriptors, three
describing the molecules as a whole (a reduced graph representa-
tion of the molecules, a Murcko scaffold, and a fingerprint based
cluster membership), with the remaining two based on the local
environment of the disconnection point (the nearest node from
the reduced graph and a string representing the nearest three
layers of SYBYL atom types).42,47 Papadatos et al. reported a
collection of common side chain replacements with well
validated effects on hERG inhibition, solubility, and lipophili-
city, most of which follow anticipated changes in lipophilicity.
However, what makes this paper a must-read for anyone
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interested in the field of MMPA are the examples where this
expectation is defied in a way that can be attributed to the local
environment of the attachment point and where there are
enough examples to demonstrate that this is a real dependence.
This paper offers a vision of how identifying context specific
effects might be systematized.
A popular alternative to the acyclic disconnection algorithms

described above are those that require a maximum common
substructure search (MCSS) to be performed on each and every
pair of molecules. The advantage of these algorithms is a
conceptual one and relates back to the central definition of a
matched molecular pair, i.e., two compounds that differ from
each other by just a small well-defined structural change. As the
name suggests, MCSS based approaches identify the maximum
amount of substructure shared between two molecules; thus,
only the absolute minimum substructure distinguishing the two
structures is identified as a byproduct and forms the basis for
molecular pairing.
Unfortunately, this method of identifying matched molecular

pairs comes at price, as where the fragmentation algorithms
require each molecule to be processed only once, a complete
MCSS based approach requires a full n � n comparison of all
the molecules in a data set. To overcome the computational
expense incurred, Sheridan performed clustering on his data set
of 100 000 compounds from the MDL Drug Data Report
(MDDR), first based on biological activity and then on topo-
logical descriptors prior to performing MMPA by MCSS.48,49

All pairs of compounds within a cluster were compared with
each other, with the highest scoring common substructure
(HSCS) being used as a core from which the fragments under-
going modification could be identified.50 Having ensured that a
single fragment was all that set the two molecules apart, the
remainder of the molecule was pruned according to two
methods, one which encoded just the bare minimum number
of atoms required to define the transformation (algorithm A)
and one where rings directly encompassing the transformation
were also preserved (algorithm B). As the compounds had been
clustered according to their biological activity at the outset, the
most frequently occurring transformations were considered
bioisosteres, as they represented groups that could be inter-
changed with each other, retaining activity across a variety of
target classes. Sheridan reports that despite returning larger
fragments and fewer observations, algorithm B appeared to be
“more appealing because it retains more of the contextual
information of the replacement”.
A revised version of Merck’s algorithm, published in 2006,

went beyond simply identifying molecular pairs with activity
against a given receptor and began to associate quantitative
changes in activity between the pair members.5 Dopamine 2
(D2) agonism, dihydrofolate reductase (DHFR) inhibition,
and angiotensin converting enzyme inhibition were studied.
First, the T-ANALYZE program was used to identify the
“remainder after elimination of common substructure” (RECS)
for pairs of molecules satisfying a given degree of similarity, which
defined the nature of the transformation itself in the previously
reported “algorithm A”. Examples of each transformation were
then clustered according to atom-pair and topological-torsion
descriptors to ensure that the transformation occurred within a
similar context in all cases, and the experimental data were added
to each of the clusters as a final step. The clusters were scored and
ranked allowing users to easily visualize interesting regions of
consistent, local SAR. The authors then took the D2 and DHFR

data sets and submitted a probe molecule to a second program,
T-MORPH, which identified relevant transformations that
could be applied to the probe and their likely effects on activity.
In AstraZeneca’s most recently published method, the authors
also use a MCSS to identify molecular pairs, only having iden-
tified the RECS, they proceed to incorporate a series of layers
of common substructure in a hierarchical version of Merck’s
“algorithm B”.51 The advantage of this so-called “WizePairZ”
approach is that the local environment is encoded as part of
the transformation (using nonproprietary SMIRKS notation).
Having identified transformations and effects on histone deace-
tylase inhibition from a small collection of compounds, all were
fed back into the program, resulting in the generation of two
structures initially omitted from the data set and accurate pre-
dictions of their biological activity.
Improvements in computer performance over recent years have

seen ever larger data sets mined for molecular transformations by
MCSS. While retaining a topological similarity based cutoff,
Southall and Ajay were able to do away with biological target-
based clustering in their analysis of 116 550 kinase inhibitors from
patents and the medicinal chemistry literature.52 They estimated
that by setting the Tanimoto threshold for comparison at 0.5, they
were able to capture 90% of the molecular pairs in the data set
while reducing the number of MCSS searches by 1000-fold. The
calculation took approximately 2 weeks on a 30-processor cluster.
Warner et al. have also reported similar performance, performing
an entirely unfiltered analysis of over 35 000 compounds in around
3 days on 36CPUs.51 Inwhat is undoubtedly the largest such study
to date, researchers at Eli Lilly performed around 3.6 � 1012

MCSS calculations in their analysis of almost 2.7 million
structures.53 Without clustering based on either biological activity
or molecular similarity, the time taken to complete this enormous
calculation was reduced through use of the RASCAL algorithm for
the MCSS,54 the use of constraints on the extent of common
substructure required and shortest path lengths between connec-
tion points, the omission of hydrogen replacements, and the use of
a 1072 core cluster on which to perform the comparisons.53�55

Nevertheless this study marks a significant achievement, as 2.7
million structures are many more than are ever likely to exist in an
experimental data set to be mined by MMPA.

’FUTURE FOR MATCHED MOLECULAR PAIRS

Having outlined some of the principal considerations in how
and when to apply MMPA, it is worth considering what new
avenues might be followed. The first priority is to apply this kind
of analysis to larger and more diverse sets of compounds, now
that the feasibility of such comparisons has been demonstrated,53

and to data sets generated in new assay types not yet considered.
This ought to lead to new insights and guidelines of utility to
understanding and optimizing compounds. During the course or
preparing this manuscript, a number of pertinent publications
have appeared: Hu and Bajorath have found transformations that
change a compound's biological activity profile (with 754 differ-
ent target proteins considered); Wassermann and Bajorath
identified bioisosteric changes that are target family specific;
Keefer et al. studied effects on a range of ADME properties
caused by a diverse set of structural changes.2,56,57 As more
parameters are studied, the possibility of identifying transforma-
tions that facilitate multiparameter optimization should be
feasible. By way of illustration of this and the predictive power
of even the so far limited published analyses, we note that in a



7747 dx.doi.org/10.1021/jm200452d |J. Med. Chem. 2011, 54, 7739–7750

Journal of Medicinal Chemistry PERSPECTIVE

recent publication from AstraZeneca it is reported that addition
of a m-Me group in a particular compound reduces solubility
from 9.5 to 8 μM and increases Clint (in microsomes) from 76 to
100 μL min�1 mg�1.58 These changes correspond to log(Sol)
and log(Clint) both decreasing by 0.1 which agrees well with
expected values of 0.21 and 0.28 predicted by Leach et al. and
Dossetter, respectively.4,11 We hope that publications concern-
ing a broader range of structural changes relating to more
properties will lead to more examples where MMPA has pre-
dicted structural changes that have changed a number of proper-
ties in such a way as to strike a desired balance.

One limitation of the approach, as stressed above, is that it can
only make predictions about structural features that have pre-
cedent in any given assay. This might be circumvented by
introducing levels of abstraction for particular groups; rather
than grouping transformations in a way that requires an exact
match, this could be loosened. For instance, if a data set does not
contain any matched pairs in which an ethyl sulfone has been
added to an aromatic ring but does have a set of pairs in which a
methyl sulfone has been added, then the prediction might be
based on this with a lipophilicity (or alternative substituent
related descriptor such as σ) term added to compensate for the
larger alkyl group. The challenge will be to ensure that the user is
comfortable as the analysis moves away from being a means of
organizing and presenting experimental data. The concepts being
developed in the area of molecular graph theory describing the
amount of editing required to link two structures may contribute
to the organizing of transformations both to address the issues
highlighted in Figure 4 and to facilitate the abstraction necessary
for extrapolation.59

The pairwise comparison involved in MMPA ought to com-
plement and validate computational modeling methods that
either rely upon abbreviating to model systems (as is the case
in many quantum mechanical studies) or that have many errors
involved that might otherwise mask any signal (as is the case in
many docking/scoring or even simulation studies). In the former
case, expensive calculations on protein�ligand binding are only
currently feasible when focused on small regions of the protein
that are in proximity to the ligand, analogous to the theozymes
proposed by Houk and co-workers to rationalize enzymatic

catalysis.60 While calculation of individual binding free energies
will be impossible, computed changes in binding energy for
structural changes ought to relate to the sort of differences that
MMPA produces. Equally, the ab initio calculation of changes in
intrinsic solubility from lattice and solvation energies could be
validated withMMPA.61 By contrast, modeling all of the atoms in
a complex system requires a number of approximations to be
used (such as those in pose scoring or in force fields) that reduce
accuracy. Computing differences could benefit from cancellation
of some of the errors introduced by these approximations, and
these differences can be compared to the output of MMPA. The
output of MMPA is limited to the observation that a structural
change leads to a particular property change but often prompts
the question of why this might be; these two approaches can help
to address this.

A view of how matched molecular pairs and other analyses
might contribute most effectively to pharmaceutical research has
been described by Griffen, outlined in Figure 7.62 Here, all
available and relevant databases can be examined to find rules
that link changes in chemical structure with improvements in
properties of medicinal chemistry interest; this happens in the
dashed box to the left of Figure 7. These rules can then be applied
to “problem molecules” that have one or more properties
preventing them from becoming clinical candidates. The applica-
tion of the rules is performed in the right-hand section of Figure 7.
In principle, the identification and application of the rules do not
need manual intervention.

MMPA provides a simple way to explore data sets in search of
the rules required for this kind of approach. The various un-
supervised approaches described above can all be used to do just
this. Each will mine a data set and find sets of compounds that
differ only by small, well-defined transformations. They can also
compute for each the corresponding effect on a property of
interest. When such methods are applied to data sets of the size
typically available (thousands of compounds), they will discover
enormous sets of potential rules (thousands to millions).51 These
rules are subject to the issues highlighted in Figure 4 of differing
degrees of specificity contrasting with different degrees of ex-
emplification. In the context of generating rules, these issues
translate to the dilemma of whether high degrees of certainty for

Figure 7. Flow diagram for a potential automated drug design tool. In the left-hand box, databases are mined to obtain rules; matched molecular pair
analysis provides a simple and effective way to obtain these rules. In the right-hand section, these rules are applied to compounds that have deficiencies
preventing them from becoming clinical candidates to suggest new molecules that might overcome those deficiencies.
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rules derived from many diverse molecules are preferred over
lower degrees of certainty for larger, structurally more specific
effects. The choice will depend upon the philosophy of those
involved and is unlikely to have any absolute right answer.

One consequence of taking an approach like that outlined in
Figure 7 is that the nature of the compounds that are represented
in the databases of measurements becomes highly significant.
Ideally, significant numbers of structural transformations would
be represented with each deriving from a diverse and large set of
compounds. Most of the measurements are generated without
this consideration; they are generated to determine properties of
interest to particular drug discovery projects. By identifying
compounds that would populate matched pairs sets that are
available for testing and generating data on them, MMPA can
improve its own utility by enhancing the certainty of rules that
appear to be interesting but that do not have enough data to be
convincing. In this way, the ideal outcome of providing drug
designers with rules that surprise them but that are nonetheless
convincing can be achieved.

’SUMMARY

MMPA has become accepted as a useful approach in drug
discovery. In the absence of experimental data, it can be used to
identify the frequency with which certain transformations have
been performed. It has been applied across a range of properties of
medicinal chemistry interest. It contrasts favorably with some
alternative data analysis methods and in particular presents
experimental data to drug designers in a way that naturally
suggests what compound to make next but within the limit of
transformations that have been exemplified in the data set. It can
be used to define a set of transformations that have historically
modulated a given property that can assist the design of future
compounds. Many researchers have developed software for
identifying matched molecular pairs, and the approach taken
tends to be governed by themotivation behind the analysis. There
are a number of important considerations determining when
matched pairs are appropriate. There is an inevitable trade-off
between structurally specific changes that are less well exemplified
and more general changes that are better represented but less
likely to be surprising. Data ought to be carefully prepared and
generated in assays that are as homogeneous as is practicable.
Matched pairs can complement molecular modeling techniques
such as quantum mechanics and docking. Matched pairs can be
used to obtain rules of thumb that can guide improvements in any
measurable property or indeed several properties at once.
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